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Abstract—Decaf is a dataflow system for the parallel com-
munication of coupled tasks in an HPC workflow. The dataflow
can perform arbitrary data transformations ranging from simply
forwarding data to complex data redistribution. Decaf does this
by allowing the user to allocate resources and execute custom
code in the dataflow. All communication through the dataflow
is efficient parallel message passing over MPI. The runtime for
calling tasks is entirely message-driven; Decaf executes a task
when all messages for the task have been received. Such a message-
driven runtime allows cyclic task dependencies in the workflow
graph, for example, to enact computational steering based on the
result of downstream tasks. Decaf includes a simple Python API
for describing the workflow graph. This allows Decaf to stand
alone as a complete workflow system, but Decaf can also be used
as the dataflow layer by one or more other workflow systems
to form a heterogeneous task-based computing environment. In
one experiment, we couple a molecular dynamics code with
a visualization tool using the FlowVR and Damaris workflow
systems and Decaf for the dataflow. In another experiment, we
test the coupling of a cosmology code with Voronoi tessellation
and density estimation codes using MPI for the simulation, the
DIY programming model for the two analysis codes, and Decaf
for the dataflow. Such workflows consisting of heterogeneous
software infrastructures exist because components are developed
separately with different programming models and runtimes, and
this is the first time that such heterogeneous coupling of diverse
components was demonstrated in situ on HPC systems.

I. INTRODUCTION

Computational science involves a workflow of intercon-
nected tasks, several of them being executed on a supercom-
puter, for example simulation, analysis, visualization, or user
interaction. A workflow can be modeled as a directed graph,
where the nodes of the graph are tasks, and the edges represent
information exchanged between the tasks. We assume that the
graph can have cycles; feedback loops can exist between tasks
so that the result of a downstream task can be used to modify
an upstream one (sometimes called computational steering).

We define dataflow to be the information exchange between
tasks in a workflow. Traditionally, tasks exchange data through
files. However, the growing mismatch between HPC computing
rate and I/O bandwidth motivates shifting from file-oriented
workflow models to in situ workflows, where dataflows are
through memory or the supercomputer interconnect, avoiding
the storage I/O bottleneck.

We designed our dataflow as a middleware layer separate
from the workflow engine because a science campaign may

consist of several workflow tools that need to cooperate, and
this design allows one dataflow middleware to support multiple
workflow tools simultaneously. However, several challenges
need to be solved as a result of this design choice. The
dataflow needs to manage the exchange between heterogeneous
programming and data models because simulation and analysis
tasks are often developed independently. Workflows can be
instantiated with different numbers of resources (MPI ranks)
per task, and the dataflow has to transform and redistribute data
during the exchange between tasks. The dataflow runtime needs
to support any generic directed graph because workflow graphs
come in different shapes and sizes, ranging from a simple
pipeline of two or three tasks to more complex topologies
including fan-in, fan-out, and cycles.

Decaf is a new dataflow middleware for in situ workflows.
Decaf is characterized by the following features, which consti-
tute the contributions of this paper.

• A decoupled dataflow: hybrid of tight and loose
coupling of tasks through an optional intermediate set
of resources called a link that can be used to transform
or redistribute data between producer and consumer.

• An efficient method for parallel data communication
based on MPI using a simple C/C++ put/get API.

• A high-level Python API for defining the workflow
graph so that Decaf can stand alone as a complete
workflow system when it is not used in conjunction
with other workflow tools.

• A design that allows composition of different workflow
systems so that the workflow can be defined in a com-
pletely different software tool, with Decaf providing
only the dataflow capability.

• A message-driven runtime for executing workflow tasks
when all messages for a task have been received, which
supports any directed graph topology, including cycles.

• Support for the MPMD (multiple program multiple
data) capability of MPI to run multiple executables
in the same job launch, a feature available on most
supercomputing and cluster platforms.

• Demonstration in workflows consisting of several
heterogeneous systems and simulation, analysis, and
visualization application codes.



The reminder of this article is organized as follows.
Section II reviews related work. Section III describes Decaf’s
design and key features. Section IV evaluates the capabilities
and overhead of Decaf. Section V summarizes our accomplish-
ments and briefly describes future work.

II. BACKGROUND AND RELATED WORK

A. Types of In Situ Workflows

Our definition of in situ is broader than others’ who limit
it to tasks performed only in the same node or core of the
computer. Some call this synchronous or tightly coupled as
well [1]. We allow in situ to mean anywhere in the same HPC
system during the same scheduled execution of a job. Hence,
our use of the term includes what others have called in transit
[2], [3] or coprocessing [4], [5], [6], in addition to the strictly
synchronous turn-taking mode. Figure 1 illustrates the different
in situ coupling modes.

We classify each pair of in situ coupled tasks (2 nodes
connected by one link in the workflow graph) as being coupled
by time division and space division [7]. In time division, the
two tasks, producer and consumer, share the same resources and
run sequentially in time. For example, a simulation (producer)
and analysis (consumer) task may take turns operating on the
same time step of data. The simulation computes the data for
one time step and then waits while the analysis task processes
the data, which then waits while the simulation generates the
next step.

In space division, the producer and consumer run on
different resources concurrently in time. Using the same
simulation-analysis example, the simulation computes the first
time step, copies or sends it to the consumer, and then computes
the second time step while the analysis code processes the first
time step. Both modes are used in practice, and there are time-
space tradeoffs between them. Space division also must address
flow control so that a fast producer does not overrun a slow
consumer [8].

Consumer
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for each time step

Consumer

Producer

for each time step

Data copy
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Fig. 1. Time-division and space-division in situ coupling of a producer and
consumer task.

B. In Situ Workflow Runtimes

In situ middleware has been developed by various communi-
ties. Such middleware has to face performance, programability,
and portability trade-offs highlighted in [9]. We characterize
these tools according to their execution model of in situ tasks.

a) Time division: Scientific visualization is one of the
main targets for in situ analytics, motivated by the need for high
bandwidth and temporal resolution. Yu et al. [10] integrated
a particle volume renderer synchronously in a combustion
code (S3D). The renderer processing required 10% of the

total execution time to produce images. Current production
visualization tools include ParaView [11] and VisIt [12] for
postprocessing. Both have an in situ library, respectively
Catalyst [6] and Libsim [13], to process data from simulations.
The goal of these libraries is to convert the internal data
structures of the simulation to VTK data structures. The libraries
then execute the rendering pipeline, usually synchronously,
although other configurations are possible.

Other in situ middleware originates in the I/O commu-
nity. Originally designed for I/O staging, these tools have
subsequently coupled analysis and visualization applications
together with simulations. Their API is intended to look to the
simulation like a file write. ADIOS [14] is a common interface
for multiple I/O methods. Although initially developed to store
data efficiently in parallel, ADIOS now provides methods to
share data between codes and transform data in situ along the
I/O path [15].

b) Space division: Several frameworks using the ADIOS
interface can transfer data asynchronously to dedicated re-
sources. DataStager [2] can schedule data movement while the
simulation is in its computational phase, avoiding unnecessary
network contention. FlexPath [16] provides a publisher/sub-
scriber model to exchange data between parallel codes having
different numbers of processes (M⇥N communication pattern).

DataSpaces [17] implements a distributed shared-memory
space with a publisher/subscriber interface for external applica-
tions. DataSpaces indexes data based on a space-filling curve.
Data are then distributed among data servers based on their
index. The index is used both for pushing data into DataSpaces
and for retrieving data efficiently from it.

Damaris [18], [1] splits the global MPI communicator of
a simulation to dedicated cores or nodes [19] in order to run
the analysis concurrently with the application. The framework
was used to stage I/O and for in situ visualizations. Functional
partitioning [20] also uses dedicated cores for I/O with a FUSE
interface.

HDF5 DSM [21] connects a simulation code to ParaView
by using the HDF5 interface. The simulation and the ParaView
servers can run in separate jobs. Both jobs read and write data
to the shared virtual HDF5 file layer; steering is also possible.

c) Hybrid approaches: Both time division and space
division have pros and cons, hence the need for flexibility
in analytics placement [22]. Several solutions now support
both time and space division. FlexIO [23] enables the user
to perform analytics synchronously during the simulation or
asynchronously on dedicated cores or nodes. Bennett et al. [3]
combined computations in time division followed by other
processing on dedicated nodes using DART servers [24] to
transfer data. They applied several analysis algorithms to the
combustion code S3D this way.

FlowVR [8] couples parallel codes to form a graph of tasks.
The user manually sets the placement of each task allowing any
placement strategy. Each task is usually a separate executable.
Communication between parallel codes is managed by a daemon
running on each node. Decaf also adopts a hybrid approach.
Similar to FlowVR, Decaf composes multiple executables to
form a workflow. However its execution model is designed for



current supercomputer environments, and it does not rely on a
sepate daemon to manage the graph execution.

C. Workflow Graph Definition

ADIOS [14] describes the data model and the transport
method in a separate XML file. Swift [25] is a script language
to write a parallel program; the runtime then analyzes the
program to extract parallel tasks and executes the workflow
graph. FlowVR [8] has a simple Python interface to describe
how to launch individual tasks and how to link them to form
a graph. The Python script then generates intermediate XML
files read by the runtime to launch each task and generate
the appropriate communication channel. Decaf has a similar
Python interface as FlowVR to describe the graph. However,
the description is simplified: the user describes nodes and links
as serial entities while Decaf takes care of their parallelism.
Other workflow engines are tailored for distributed computing,
such as PyCOMPSs [26] and Pegasus [27]. PyCOMPSs uses
annotations in a Python program to generate tasks and schedule
them within jobs. Pegasus include scripts to generate common
workflow patterns from templates.

III. DESIGN

A. Decaf Dataflow

The main building block of a Decaf workflow is a dataflow.
A dataflow is the association of a producer, consumer, and a
communication object to exchange data between the producer
and consumer. Producers and consumers, called nodes in Decaf,
are parallel user-supplied codes such as simulation and analytics.
For instance, Gromacs [28], a molecular dynamics simulation,
typically generates atom positions, and scientists use tools such
as VMD [29] to visualize and analyze the atom positions. In
an in situ context, Gromacs and VMD communicate directly
through memory. Data structures between the two codes are
often different, and some data adaptation might be required.
This can be as simple as converting data units (from nanometers
to angstroms) to more complex data rearrangements such as
mapping a simulation data structure to a VMD data structure.

These data transformations can require extensive compu-
tations. To address these needs, a Decaf dataflow includes an
intermediate staging area with computational resources. We
call the staging area a link. A link is an intermediate parallel
program transforming data between a parallel producer and a
parallel consumer.

Figure 2 shows the organization of a dataflow in Decaf.
More advanced workflow graphs can be obtained by combining
multiple dataflows. The dataflow is a simple graph with two
nodes and a link. All three are MPI programs, each with its
own MPI communicator. The dataflow creates two additional
communicators: producer-link and link-consumer. Section III-C
describes how data are exchanged through the communicators.
Section III-D explains how to describe such graphs and how
the runtime executes them.

The link resources are optional; one can disable the link
when no data manipulations are required between the producer
and consumer. In that case, the user does not assign any
MPI ranks to the link, and the runtime creates only one
communicator directly between the producer and the consumer.

Fig. 2. Decaf forms 5 communicators for a dataflow: one communicator
each for producer, consumer, and link, plus two more communicators for the
overlap between producer-link and link-consumer.

int main(int argc ,
char** argv)

{
// define the workflow
Workflow workflow;
make_wflow(workflow );

// initialize MPI and Decaf
MPI_Init(NULL , NULL);
Decaf* decaf = new Decaf(MPI_COMM_WORLD , workflow );

// run the task
vector <pConstructData > in_data;
while (decaf ->get(in_data ))
{

// process the input data

// send the results outbound
pConstructData out_data;
decaf ->put(out_data );

}

// end the task
decaf ->terminate ();

// cleanup
delete decaf;
MPI_Finalize ();
return 0;

}

Listing 1. A typical node program constructs the Decaf object and executes
a node task. The task waits for all its inputs to be satisfied and then processes
the received data. It can safely do this in an infinite loop because the Decaf
get() function returns false upon termination

B. Code Modification

Decaf differentiates between node (producer, consumer) and
link code. Decaf nodes are existing codes such as simulation
or analytics. In order to minimize the code modifications
necessary to integrate these codes. Decaf has a simple put/get
model that allows tasks to send/receive data to/from the rest of
the workflow. Listing 1 gives the general structure of a node
program.

After the initialization of the runtime (Section III-D), the
user starts a loop over incoming data. The get(in data)
call waits until data are received on all inbound links or a
termination message is received. In the latter case, the code
exits the iteration loop. The user then processes the incoming
data and possibly sends new data by calling put(out data).
pConstructData is the handler of the data model described
in Section III-C. The terminate() call signals to the runtime
to exit the application. If the node is a source (no inbound
link), the user simply does not call get(in data). If the node
is a sink (no outbound link), the user does not need to call



int main(int argc ,
char** argv)

{
// define the workflow
Workflow workflow;
make_wflow(workflow );

// initialize MPI and Decaf
MPI_Init(NULL , NULL);
Decaf* decaf = new Decaf(MPI_COMM_WORLD , workflow );

// cleanup
delete decaf;
MPI_Finalize ();
return 0;

}

void link_callback(void* args ,
Dataflow* dataflow ,
pConstructData in_data)

// process the input data
...

// send the results outbound
pConstructData out_data;
decaf ->put(out_data );

}

Listing 2. A typical link program constructs the Decaf object and provides a
link callback function.

put(out data). This API is available in C and C++.

Links differ from nodes because they are not meant to run
a loop but rather to manage the flow of data. The user provides
to the runtime a callback function for each link in the workflow
graph. Recall that a link has associated computational resources.
Every time a node sends data, the link executes the callback
function provided by the user.

Listing 2 describes a simple link skeleton. The link
execution is managed by Decaf, which calls link callback
when necessary. The callback accesses the data in the dataflow,
processes them, and forwards them to the consumer of the
dataflow. Some in situ infrastructures such as PreData [30]
also allow processing data on the fly by using codelets. Decaf
differs in that the links are full C/C++ code with dedicated
computational resources.

C. Data Model and Redistribution Components

Decaf relies on Bredala [31] to describe data and transfer
data between MPI programs. Bredala protects the semantic
integrity of a data model during split and merge operations using
the notion of a semantic item. This is the smallest subset of data
that contains all the fields of the original data structure and still
preserves its semantics. Bredala provides a safe way to access,
extract, and merge semantic items within a data model. Bredala
comes with four common redistribution strategies: round-robin,
contiguous, spatial, and block redistribution (Figure 3).

Decaf uses both the data model and the redistribution
components of Bredala. The data model serves as the data
interface to exchange data between tasks within the workflow.
For each dataflow, Decaf creates two redistribution components:
one between the producer and the link and one between the
link and the consumer. When calling put(), Decaf passes
the data to the corresponding redistribution component that
manipulates and transmits the data to its destination. When
calling get(), Decaf receives data on the corresponding
redistribution component and transmits it to the task.

w = nx.DiGraph ()

# Task declaration
w.add_node(�node0 �, start_proc=0, nprocs =4)
w.add_node(�node1 �, start_proc=7, nprocs =2)
w.add_node(�node2 �, start_proc =11, nprocs =1)

# Dataflow declaration
w.add_edge(�node0 �, �node1 �, start_proc=4, nprocs=3,

func=�dflow �, path=mod_path ,
prod_dflow_redist=�count �,
dflow_con_redist=�count �)

w.add_edge(�node1 �, �node2 �, start_proc=9, nprocs=2,
func=�dflow �, path=mod_path ,
prod_dflow_redist=�count �,
dflow_con_redist=�count �)

wf.workflowToJson(w, mod_path , "linear3.json")

Listing 3. Code sample to generate a 3-node pipeline.

D. Graph Description and Runtime Execution

A Decaf workflow is the composition of multiple dataflows.
For instance, to create a pipeline of three tasks, the user declares
two dataflows, where the second task is both consumer in the
first dataflow and producer in the second dataflow. Decaf does
not apply any constraints on the graph topology. In particular,
the user can define cycles in the graph for steering scenarios.
Moreover, a particular task can be a producer and/or consumer
in multiple dataflows.

The user describes the workflow graph in a Python script.
Listing 3 presents the code generating a three-task pipeline.
First, the user describes individual tasks with a name and a set of
resources (MPI ranks). Second, the user describes the dataflow
linking two tasks (producer, consumer), a set of resources (MPI
ranks for the link), and the choice of redistribution strategy.
The same task can be used by several dataflows as producer
or consumer. Once all the tasks are described, the user calls
workflowToJson to generate a JSON file. That file contains an
intermediate representation of the workflow read by the Decaf
runtime upon initialization. The graph description is done prior
to the launch of the workflow.

In a Decaf workflow, every task is an MPI program. Each
task can be a separate program, or all tasks may be combined
in a single program. We rely on the MPMD (multiple program
multiple data) capability of MPI to launch all the programs.
With this method, MPI COMM WORLD is shared among all
the executables. Based on the information provided by the
JSON file, Decaf creates five communicators (Figure 2) per
dataflow: one for the producer, link, and consumer, and one for
each redistribution component. This method requires existing
codes such as simulations only to replace their equivalent of
MPI COMM WORLD by the communicator provided by Decaf.

The link functions are provided by the user and called by
Decaf. The user provides a library path and function name to
call when declaring a link so the runtime can load the user’s
functions. The link code can be executed in separate or the
same MPI ranks as the producer or consumer.

IV. EVALUATION

We evaluated Decaf in two workflows: one from molecular
dynamics and one from cosmology. With the molecular dy-
namics example, we evaluate the steering capabilities of Decaf
and its interoperability with other in situ middleware to create
complex workflows. With the cosmological example, we test
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Fig. 3. Redistribution components available in Bredala. (a) The round-robin component distributes the data item by item in a cyclic manner. (b) The contiguous
component redistributes all the items while preserving their order. (c) The spatial component divides a global domain into subdomains and attributes each item to
a particular subdomain. (d) The block component takes the data model as it is and sends it to a destination based on the MPI ranks.

Fig. 4. The FepA protein (grey), a channel on the membrane (blue) of
particular cells. Several compounds, such as an iron complex (red), can traverse
the membrane of the cell thanks to this channel. We study the traversal of
this complex and the behavior of the secondary structures (green) during the
traversal.

the scalability of our framework and its capacity to handle
large, complex data structures.

A. Molecular Dynamics

Our first example is steering a molecular dynamics simu-
lation to trigger a biological mechanism. We study the FepA
protein (Figure 4), a channel in the periplasm of Gram-negative
bacteria. Compounds can traverse the membrane of the cell
through this channel. In this case, we study the traversal of
an iron complex. This mechanism is of interest to biologists
because drugs pass through these channels.

Steering the simulations allows a biologist to push a complex
within a channel and accelerate the traversal process. The
scientist applies external forces to a subset of atoms to guide
the simulation toward a desired state. Previous works based
on this method demonstrated the interactive traversal of the
iron complex through the FepA channel [32] and with batch
simulations [33].

Workflows supporting computational steering pose several
challenges. First, a steering workflow needs to support cycles in
the workflow graph, which are difficult to handle because they
potentially can generate deadlocks. Second, the steering process
must be performed asynchronously to avoid blocking the
simulation. Third, because multiple types of interactions may
be needed (force feedback, visualization, density computation,

Fig. 5. Steering workflow with Decaf (blue), Damariz/Viz (green), and FlowVR
(orange). The steering part is managed by Decaf while visualizations are handled
by Damaris and FlowVR. Decaf and FlowVR tasks and communications are
in space-division mode (blue and orange arrows) while Damaris execution is
executed in time-division mode during the execution of Density.

etc), the middleware must be able to integrate different tools
coming from different communities into a single workflow.

In this experiment, we implement a steering workflow with
Decaf to guide the iron complex toward the FepA channel,
based on the implementation proposed in [33]. Figure 5
summarizes the workflow. First, we integrate Decaf API calls
into Gromacs [28], a molecular dynamics simulation code, to
add external forces and expose atom positions to the rest of
the workflow. Second, in a link (LinkMorton), we compute a
Morton code [34] for each atom particle. Third, we compute
a 3D density grid (Density). Fourth, we compute the force
(TargetManager) to guide the system. The trajectory for the
complex to follow is defined by a list of target positions,
provided by the user, forming a path. We used a path-finding
algorithm [35] based on the density grid previously computed
to guide the iron complex from one target to the next. In this
workflow, we use only one link to compute the Morton indices.
We configure the rest of the dataflows to skip the link because
no further data manipulations are necessary.

At each step of the workflow, we modify the fields of the
data model. First, we send atom positions and their indices



from the simulation to the link with a block redistribution
strategy. Second, we add the Morton indices and use a block
redistribution strategy to reorganize the data to compute the
density grid. Third, we remove the Morton indices from the
data model (no longer necessary) and append a 3D grid to
the data model. We send the result to TargetManager, which
broadcasts forces to the simulation with a block redistribution
strategy.

In steering processes, visualization is an important tool for
debugging and following the simulation’s progress. For this
application, we rely on two existing tools to perform in situ
visualization. First, we connected our workflow to the renderer
used in [33] based on Hyperballs [36] to visualize the molecular
model and the state of the steering system (Figure 6(a)).
This visualization is the most convenient for the biologist to
guide the complex because the user can navigate within the
molecular structure and track the iron complex. We modified
the TargetManager module to extract atom positions and send
them to a FlowVR context for visualization. This visualization
is performed in the space-division mode. We use FlowVR
because it provides the components to decouple the processing
rate of the two components and because the biologists use
FlowVR for the renderer. Second, we used Damaris/Viz [1] in
the time-division mode to visualize the density grid with VisIt
(Figure 6(b)). The density grid is extracted in parallel in the
Density task. The visualization of the density grid shows the
biologist where low density areas are located, which are good
candidates for the iron complex to go through. Because no
tools support both visualizations, we need to combine several
visualization packages in the same workflow.

The following tests were conducted on Froggy, a 138-
node cluster from the Ciment infrastructure. Each compute
node is equipped with 2 eight-core processors, Sandy Bridge-
EP E5-2670 at 2.6 GHz with 64 GB of memory. Nodes are
interconnected through an FDR InfiniBand network. FlowVR
2.1 and Gromacs 4.6 are compiled with Intel MPI 4.1.0. For
all experiments we used the molecular model of the FepA
composed of about 70,000 atoms. For all scenarios, we extracted
atom positions from the simulation every 100 iterations.

We first evaluate the impact of modifying Gromacs to run
within Decaf. Our goal is to evaluate the overhead introduced
by using Decaf. We created a workflow where Gromacs is the
only task. We modified Gromacs to receive forces and extract
atom positions and their respective indices. We also replaced all
instances of MPI COMM WORLD by the communicator provided
by Decaf, although for the first experiment, the communicator
provided by Decaf is equivalent to MPI COMM WORLD. The
overall code modifications constitutes roughly 150 additional
lines of code.

Figure 7 presents the timing decomposition of Gromacs
with increasing numbers of cores (strong scaling). The timings
represent a full I/O cycle, extracting atom positions every
100 iterations. Gromacs is the average time of 100 simulation
iterations without any Decaf calls. Get and Put are the average
time of a call to Decaf get() and put(), respectively. When
a task has no input or output communication channel, Decaf
calls return immediately. In all cases, the time spent in Decaf
operations is less than 0.001%. This experiment shows that
the same version of the code can be used as a production
standalone executable or as part of a workflow without any
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Fig. 7. Time decomposition of Gromacs modified with Decaf.

perceivable performance impact. The Decaf framework adds
no signifigant overhead.

Our second set of experiments studies the impact of our
steering pipeline on Gromacs performance. We created the
workflow as described in Figure 5 but without any visualization.
Our goal is to evaluate the capability of Decaf to efficiently per-
form computations in space-division mode without significant
overhead on the simulation performance.

We ran each task using a space-division strategy. We
allocated one node as a staging node and the remaining nodes
as simulation nodes. We hosted the Density (four cores) and
TargetManager (one core) tasks on the staging node. We
limited the Density task to four cores because the density
grid is relatively small (170x80x180). Gromacs runs on each
simulation node using 15 cores per node out of 16. The
LinkMorton task runs on the remaining core on each simulation
node to preserve data locality. We configured MPI to bind each
MPI rank to a given core to avoid process migration and reduce
performance variability.

Figure 8 presents the timing of the Gromacs execution and
the steering process. As before, we give the timing of a full
I/O cycle (100 simulation iterations). Steering indicates the
accumulated execution time of the LinkMorton, Density, and
TargetManager tasks.

The steering processes has a time budget of 100 simulation
iterations to complete before blocking the simulation. In our
setup, the steering pipeline requires between 30 and 60 ms.
At 480 cores, the simulation requires on average 277 ms to
compute 100 iterations. In all cases, the time spent by Gromacs
in Decaf operations represents less than 0.1% of a full I/O
cycle. This experiment shows that Decaf is able to efficiently
overlap in situ computations in the space-division mode with
negligible impact on the simulation performance.

We also evaluated the cost of in situ visualization. Our first
rendering method uses the FlowVR molecular renderer. FlowVR
allows us to send atom positions directly to the visualization
without blocking the pipeline. We used the same setup as for
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Fig. 6. (a) Visualization of the molecular system with FlowVR. (b) Visualization of the density grid with Damaris/Viz.
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Fig. 8. Time decomposition of Gromacs performance modified with Decaf
and connected to the steering pipeline without visualization. The measured
time is the average over a full I/O cycle (100 iterations).

the previous experiment with 480 cores for the simulation. As
before, the time spent by Gromacs in get() and put() calls
represents less than 0.1% of a full I/O cycle. The steering
process, including the transfer to the FlowVR visualization,
requires in the worst case 63 ms, while the simulation takes
277 ms to complete a cycle. With this setup, the visualization
computation time is completely overlapped by the simulation
computations.

Our second rendering method used Damaris/Viz and libsim
VisIt to display the density grid computed in the Density task.
We used the time-division mode: the rendering time was directly
added to the steering time. With this scenario, we visualized
the density grid using isosurface rendering. The rendering was
performed only if a VisIt client is connected to the VisIt server.

Figure 9 presents the time decomposition of Gromacs over
numerous iterations. Gromacs is the execution of Gromacs
including Decaf operations. Get and put give the respective

timings of get() and put(). Visit gives the time spent in
VisIt operations. We notice three distinct phases. The first
phase, between iteration 0 and 19,400, shows Gromacs with
an average execution time of 240 ms and almost no time spent
in get() or put(). VisIt requires only 4 ms in this phase
because no clients are connected to the servers. In the second
phase, between iteration 19,400 and 27,200, we connect a VisIt
client to the workflow. Consequently, Gromacs execution time
increases significantly. Most of the execution time is spent in
get(), which blocks until the full steering process is completed
including the VisIt rendering. The isosurface rendering method
is costly, between 1,000 ms and 3,933 ms, and increases the
steering time because the rendering is performed synchronously
in time-division mode. As a reminder, the time budget for the
simulation is 277 ms on average. Any computation longer
than this threshold, which is the case with VisIt, blocks the
simulation. The third phase, from iteration 27,200 to the end,
presents results similar to the first phase. We disconnected the
VisIt client; VisIt rendering computations stop, and its execution
time is reduced to 4 ms as during the first phase.

This experiment demonstrates that Decaf is able to create
complex workflows, integrate the user in the loop, and perform
asynchronous computation at a low cost. It also shows that
Decaf is able to interact with other in situ middleware such as
FlowVR and Damaris/Viz which are more appropriate tools for
specific visualization tasks. The code to run these experiments
is available in open source.1

B. Cosmology

The second use case is the analysis of dark matter tracer
particles from a Vlasov-Poisson N-body cosmology code. In
this workflow, we focused on the conversion of particle data to
the deposition of particle density onto a regular 2D and 3D grid,
using a Voronoi tessellation as an intermediate step. For high
dynamic range data such as dark matter particles, computing
the Voronoi tessellation first produces more accurate density
estimates than less expensive methods that compute the density
directly from the particle data [37]. The data model produced
by the cosmology code, a set of particles, is transformed into

1https://bitbucket.org/matthieu dreher/gromacs interactive

https://bitbucket.org/matthieu_dreher/gromacs_interactive
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Fig. 9. Time decomposition of Gromacs as a function of iteration count.
Gromacs is the execution of Gromacs including Decaf operations. Get and put
give the respective timings of get() and put(). VisIt gives the time spent in
VisIt operations.

the intermediate data model of the Voronoi tessellation, an
unstructured polyhedral mesh, before being converted into a
2D or 3D regular grid of density scalar values.

The N-body cosmology code is HACC [38]. The tessellation
and density estimator codes are built on the Tess library [39],
which in turn is built on the DIY data-parallel programming
model [40]. The three tasks are coupled with a link between
each task in a 3-node linear workflow graph using Decaf. The
link between the simulation and tessellation nodes rearranges
the particles from the structure of arrays (SOA) format produced
by HACC to an array of structures (AOS) format required by
Tess. The link between the tessellation and density estimator
simply forwards the polyhedral mesh data model without
modifying it.

All three tasks are parallel MPI programs that scale to large
numbers of MPI processes. The intermediate tessellation has a
large memory footprint, approximately 15 times as large as the
simulation data, making it necessary to compute the tessellation
on a separate set of compute nodes from the simulation or
density estimation. The density image (Figure 10) is a fraction
of the simulation data size; but because the density estimator
ingests the Voronoi tessellation, it begins with the same memory
footprint as the tessellation. Because of the large memory
footprints of the analysis tasks and the desire to perform analysis
simultaneously with simulation, we configured all the nodes
and links with space division to use separate resources. In the
following experiment, we selected equal numbers of processes
for all tasks and links.

The tests were conducted on the IBM Blue Gene/Q Vesta
machine at the Argonne Leadership Computing Facility at
Argonne National Laboratory. Vesta is a testing and devel-
opment platform consisting of 2K nodes, each node with 16
cores (PowerPC A2 1.6 GHz), 16 GB RAM, and 64 hardware
threads. We ran 8 MPI processes per compute node. The Clang
compiler, based on LLVM version 3.9, was used to compile
the code with -O3 optimization.
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Fig. 11. Strong scaling of the cosmology simulation-tessellation-density
estimation workflow shows good scaling efficiency until the small number of
particles per process and load imbalance of the tessellation reduce efficiency.
The time of the analysis tasks is effectively overlapped with the simulation
time.

Figure 11 show the performance of a strong-scaling test in
log-log scale. In our test, we used 1283 particles estimated onto
a 5122 2D output grid. The vertical axis is the time to simulate
a total of 100 time steps and to compute the tessellation and
density estimate every 10 time steps. The horizontal axis is the
total number of MPI processes for the entire workflow. The
curves in the plot include total (end-to-end) time as well as
the time for each of the three tasks.

The overall strong-scaling efficiency is approximately 50%
from 40 to 320 processes. Past that point, the diminishing
number of particles per process combined with the increasing
imbalance between processes reduces the scalability of the
tessellation, which in turn affects the rest of the workflow.
For example, at 1,280 processes, the final time step of the
simulation produces only 16 particles in the least-loaded process
and 1,972 particles in the most-loaded one. The load imbalance
as dark matter particles cluster into halos is expected; using
a k-d tree instead of a regular grid of blocks to perform the
tessellation [41] will improve this situation. The overall small
number of particles per process implies that we have exceeded
the required resources for this size problem; we intend to
simulate larger problems with more initial particles in the
future.

Several trends are evident in the timing measurements. The
times for the individual tasks are similar to each other. The
reason is that the data dependencies between tasks and their
intertask communication synchronizes them. Moreover, the
tasks overlap in time so that the total time is only slightly
longer than that of the longest task, which is density estimation,
but much less than the sum of the parts. This is especially true
over the total of multiple time steps and effectively hides the
analysis time from the simulation. One curious data point is at
640 processes, where the time increases from 320 processes;
we are investigating the cause of this slowdown .



Fig. 10. (Left to right) Output of cosmology analysis workflow at time steps 10, 30, 60, and 100.

V. CONCLUSION

We introduced Decaf, a lightweight middleware for coupling
in situ tasks to form workflows. Decaf makes it easy to modify
existing codes such as simulation or analytics codes with a
simple API. It is also simple to describe the workflow in
Python as a directed graph where nodes are tasks and edges
are communication channels. The Decaf runtime takes care of
building the communication channels and scheduling the data
exchanges. Decaf does not impose any constraints on the graph
topology and can manage graphs with cycles.

We evalutated Decaf’s capabilities and interoperability with
various examples. The first was a steering scenario merging
a molecular dynamics simulation, user analytic codes, and
visualizations with FlowVR and Damaris/Viz. With our second
example, we studied Decaf’s scalability up to 1,280 cores with
a cosmology example involving complex data structures to
exchange.

Parallel producer and consumer tasks in a workflow often
run at difference paces. For instance, a consumer might not be
able to process incoming data fast enough. In our future work,
we will incorporate buffering capabilities between producers
and consumers to manage disparate data rates. We also plan to
add data consistency checks when creating a workflow graph.
The goal is to ensure that a consumer requiring a particular data
model is connected to a producer providing a corresponding
data model.

The Decaf project is available in open source.2
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